Contact: +91-9711224068
International Journal of Physical Education, Sports and Health
  • Printed Journal
  • Indexed Journal
  • Refereed Journal
  • Peer Reviewed Journal

P-ISSN: 2394-1685 | E-ISSN: 2394-1693 | CODEN: IJPEJB

Impact Factor (RJIF): 5.38

"International Journal of Physical Education, Sports and Health"

2020, Vol. 7, Issue 6, Part D

Quantifying and explaining trainer variation in fitness assessments using multilevel modeling


Author(s): Peter D Hart

Abstract: Background: A characteristic of a good fitness test is its ability to create variation between participants. However, variation in fitness scores between different trainers is not often considered.
Purpose: The purpose of this study was to use multilevel linear models to quantify and explain variation in fitness scores.
Methods: Data for this research came from N=131 college students attending a rural public university. Five (5) different fitness assessments were administered to each participant and included measures of percent body fat (PBF, %), muscular endurance (ME, reps), muscular strength (MS, kg), flexibility (FL, cm), and cardiorespiratory fitness (CRF, ml/kg/min). Various random intercept and random slope multilevel models were evaluated to quantify and explain variance in participants (level 1) nested within trainers (level 2). Participant physical activity rating (PAR) and trainers’ percentage of athlete clients (Athletes) were used as level 1 and level 2 predictors, respectively, while controlling for age and sex.
Results: Results from the unconditional means (variance components) models indicated significant trainer (intercept) variation in the CRF model only (ICC = .35, p = .020). A CRF outcome model with random intercept and fixed slopes was the most parsimonious model found (b PAR = 1.45, b Athletes = 10.33, b Age = -0.21, b Sex = 2.54, p = .001, R2 Pseudo = .57). The final model explained 32% and 68% of level 1 and level 2 variance, respectively.
Conclusion: Results from this study showed that trainer variation in fitness assessment scores is only considerable in CRF testing. Furthermore, athlete status of the trainers’ participants explains a substantial amount of trainer variation in CRF.


Pages: 246-249  |  136 Views  4 Downloads

Download Full Article: Click Here

How to cite this article:
Peter D Hart. Quantifying and explaining trainer variation in fitness assessments using multilevel modeling. Int J Phys Educ Sports Health 2020;7(6):246-249.
Call for book chapter
International Journal of Physical Education, Sports and Health
Journals List Click Here Research Journals Research Journals