

P-ISSN: 2394-1685 E-ISSN: 2394-1693 Impact Factor (ISRA): 5.38 IJPESH 2021; 8(4): 136-139 © 2021 IJPESH www.kheljournal.com Received: X-05-2021 Accepted: X-06-2021

Bipin Kumar Dubey

PhD Scholar, Visva Bharati University, Santiniketan, West Bengal, India

Mahesh Swata Khetmalis

Associate Professor, Visva Bharati University, Santiniketan, West Bengal, India

Determinants of women sports participation: A factor analysis

Bipin Kumar Dubey and Mahesh Swata Khetmalis

Abstract

Objective: To find out the determinants which influence the participation of women in sports.

Method: 300 female students from schools of Varanasi, Uttar Pradesh with age range from 15 to 16 years. Factor Analysis was used to find the different factors and items with reveals the different influence in sports participation of women.

Results: Eleven factors were extracted with 60.99% of variance in totality.

Conclusion: Multiple factors were extracted which influence the sports participation with emphasis on.

Keywords: SPSS, esteem, attitude etc.

Introduction

Education is one of the most powerful tools for empowering individuals, communities, and, in particular, women and girls. Academic success and literacy rates are both indications of a society's overall progress. Women's empowerment and gender equality are critical for long-term progress and stability.

Biological, economic, and cultural variables all have an impact on women's health. While it is conventional to anticipate women to live longer than males, this does not always suggest a higher quality of life. Women, according to statistical evidence, are more ill and disabled throughout their lives than men. It has been hypothesized that when basic maternity care is unavailable, women are particularly vulnerable. Numerous studies have documented the community's, paramedical staff's, NGO's, policymakers', and teachers' voluntary participation in various development programmes aimed at reducing poverty and increasing female literacy rates (Reed *et al.*, 2017) [2].

According to many reviews and relevant studies, the researcher chose the questionnaire "Attitude of girls towards sports participation" to determine the probable replies and various characteristics of girls' attitudes toward sports participation.

Methods

This study enlisted the participation of 300 female students. Participants were chosen at random from several Varanasi schools and ranged in age from 15 to 16 years old. Subjects were given signed, voluntary, and informed consent prior to participation, and a self-made questionnaire titled "Attitude of Girls towards Sports Participation Questionnaire" was used. Factor Analysis and Percentages were used to examine the many replies collected in terms of distinct personal and social problems (Provision) that limit Girl's from participating in sports activities. SPSS 20. Software was used to conclude all the research questions.

Results and Discussion

Table 1: KMO and Bartlett's test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.					
	Approx. Chi-Square	979.208			
Bartlett's Test of Sphericity	Df	351			
	Sig.	.000			

Corresponding Author: Bipin Kumar Dubey PhD Scholar, Visva Bharati University, Santiniketan, West Bengal, India The KMO value ranges between 0 and 1. The sample size for the factor analysis is more appropriate the closer the KMO value is near 1 (Verma, 2013) [7]. In this case, KMO value is 0.644, which is <0.5; hence, the sample size is adequate for this study and it shows that the investigator can proceed further with the exploratory factor analysis.

To see if a correlation matrix is an identity matrix, Bartlett's sphericity test is performed. Because the significance value (p value) of Bartlett's test is.000 in Table 3, which equals 0.05, the correlation matrix is not an identity matrix. As a result, it is possible to conclude that the factor model is adequate (Verma, 2013) [7].

Table 2: Communalities in esteem

Question no.	Extraction
6	.560
25	.545
33	.703
42	.553
49	.592
50	.717
57	.614
58	.557
66	.664
69	.564
73	.617
74	.577
77	.591
83	.548
85	.747
87	.585
88	.613
89	.637
90	.591
92	.630
93	.611
94	.591
95	.707
96	.557
97	.636
110	.591
111 E. (. M. (.569

Extraction Method: Principal Component Analysis.

When a variable has a high communality, it suggests that the bulk of its variability is explained by all of the components revealed in the study. If the value of the variable communality is 0.4, it is considered unnecessary and should be eliminated

from the model. Table 18 demonstrates that all of the variables have communalities greater than 0.4, indicating that they are all meaningful in the model and that the investigator can use them all for factor analysis (Verma, 2013)^[7].

Table 3: Total variance explained

Commonant	Initial Eigenvalues			Extra	ction Sums of Sq	uared Loadings	Rotation Sums of Squared Loadings			
Component	Total	% of Variance	ance Cumulative %		% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	3.216	11.910	11.910	3.216	11.910	11.910	1.731	6.413	6.413	
2	1.777	6.583	18.493	1.777	6.583	18.493	1.647	6.101	12.514	
3	1.626	6.022	24.515	1.626	6.022	24.515	1.645	6.093	18.607	
4	1.567	5.803	30.318	1.567	5.803	30.318	1.639	6.072	24.679	
5	1.389	5.144	35.461	1.389	5.144	35.461	1.601	5.929	30.608	
6	1.295	4.796	40.257	1.295	4.796	40.257	1.468	5.438	36.046	
7	1.229	4.550	44.808	1.229	4.550	44.808	1.453	5.381	41.427	
8	1.185	4.389	49.197	1.185	4.389	49.197	1.396	5.169	46.596	
9	1.118	4.140	53.336	1.118	4.140	53.336	1.321	4.893	51.489	
10	1.050	3.889	57.226	1.050	3.889	57.226	1.311	4.856	56.346	
11	1.017	3.768	60.994	1.017	3.768	60.994	1.255	4.648	60.994	
12	.970	3.593	64.587							
13	.919	3.403	67.989							
14	.854	3.162	71.151							
15	.824	3.051	74.202							
16	.763	2.827	77.029							
17	.720	2.667	79.696							
18	.691	2.559	82.255							
19	.663	2.455	84.710							
20	.635	2.352	87.062							
21	.581	2.151	89.213							

22	.545	2.018	91.231			
23	.513	1.900	93.131			
24	.512	1.895	95.026			
25	.480	1.778	96.804			
26	.442	1.637	98.441			
27	.421	1.559	100.000			

Extraction Method: Principal Component Analysis.

The all three section of the table no. 19 (Initial Eigenvalues, Extraction Sums of Squared Loadings and Rotation Sums of Squared Loadings) is clearly showing that the variance

explained in the table is Only 11 (eleven) Factors. Together, they reach to 60.994% of the variability of the original variables. (IBM, 2020)

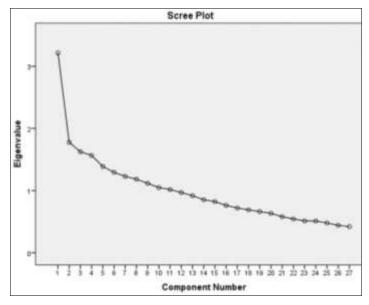


Fig 1: Graphical representation of esteem questions

The screen plot (shown in figure) is created by graphing the factor (along the X axis) against their eigenvalues (along Y axis). Only 11 (eleven) components have eigenvalues greater

than one, whereas the rest factors have eigenvalues less than one, as shown in this graph. This Screen plot can be used to determine how many factors should be kept.

Table 4: Rotated component matrix^a (esteem)

O. No.						mpone					
	1	2	3	4	5	6	7	8	9	10	11
6	.043	078	.623	198	160	.114	.243	.082	.097	064	.082
25	193	.027	.173	.070	573	020	.259	.231	.018	.133	074
33	.613	.120	289	.184	227	240	.272	.000	.075	002	.084
42	.361	.310	005	019	.049	160	.223	226	.180	321	250
49	.062	.681	078	.201	015	.163	140	035	.033	.064	.156
50	.131	.105	.126	.081	047	002	008	.010	025	.014	.814
57	.086	.252	.069	.336	.212	.046	.369	277	006	.337	.228
58	135	.328	.020	.237	.337	.090	.286	389	.075	.122	.014
66	012	.715	.101	232	.024	.161	.180	.107	.108	038	068
69	.255	.142	135	.307	.380	.216	.384	.096	124	053	.002
73	.697	.064	.112	017	.106	.279	094	.007	.110	.052	046
74	.055	.018	.128	.087	.060	.136	.168	.697	114	.010	.024
77	016	.219	.156	.116	.175	.651	.042	.075	.176	099	044
83	.037	.400	.399	062	.289	261	077	.077	131	.169	.122
85	.047	.083	029	.028	015	005	088	032	.194	.828	.055
87	.067	023	.063	003	.032	.097	.739	.089	.083	059	039
88	.073	.065	079	008	.670	.056	.239	.211	.096	016	183
89	.200	.123	001	011	111	.228	.030	.003	.711	.100	040
90	.628	123	.078	080	.338	.030	.098	.104	008	.036	.179
92	050	021	.194	.236	.320	142	.188	170	.587	.046	.021
93	041	077	.035	.757	055	.096	.068	.027	.087	031	.061
94	073	.156	.658	.265	099	088	087	.123	.091	030	.097
95	.208	133	.537	.181	006	.073	032	491	092	.088	249
96	.238	.057	.276	.342	.040	.159	.116	041	288	151	395
97	004	.104	.006	.346	.241	046	136	051	.378	509	.150
110	.124	.180	.119	.443	.064	135	166	.428	.107	.069	289
111	.116	.059	093	.006	046	.721	.105	.016	031	.095	.023

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

In table no.6, the final solution of the factor analysis after the Varimax rotation is defined. In this final answer, a clear image of the variables explaining the components correctly emerges. As a result, the factors in this final Solution have non-overlapping variables. If the factor loading on the

variables is more than or equal to 0.5, the factor extracts enough variance from the variables. As a result, all variables with a loading of 0.5 or greater on a given factor are recognized as belonging to that factor. As a result, each of the 11 (eleven) factors has been has been extracted.

Table 5: Extracted factors after varimax rotation of esteem

Questions						
Q.73 My educational career will be hampered						
Q.66 I feel fear of social criticism if I participate in sports						
Q.94 I think it is not good to participate with males	.658					
Q.93 I fear than a boy will reject me from marriage if I participate in sports	.757					
Q.88 I think my parents restrict me from sports participation because of lack of privacy	.670					
Q.111 My caste do not allow me participate	.721					
Q.87 I think if I participate in sports my marriage life will be affected	.739					
Q.74 I think I will get nothing if I participate in sports	.697					
Q.89 I feel ashamed to participate in sports	.711					
Q.85 I think dress code should not be compulsory in sports	.828					
Q.50 My grandmother do not allow me to participate in sports	.814					

After the applying Varimax Rotation, the formula has divided all the questions into 11 factors in which the highest loading factor is extracted from the given table for finalizing the concluded questions of esteem. The extracted variables were selected equals to or more than 0.50 values. So, for above table Question no. 73, 66, 94, 93, 88, 111, 87, 74, 89, 85 and 50 were extracted.

Discussion

Women in ancient societies played varied roles in numerous economic activities, such as women agricultural labour, women skilled labour, and women service class. If specific laws had to be enacted to protect the interests of women employees, and new names developed for them, it is reasonable to assume that they would have been numerous enough to attract the attention of legislators. Caste, class, religion, location, and, most importantly, gender divisions characterize Indian society. In ritual standing and standing stance, there is a distinction between male and female. Women are subjected to a great deal of social discrimination. Women in India are also differentiated by caste, location, religion, and socioeconomic status. As a result, it's difficult to talk about them as a single entity. In most cases, they do not have a status higher than or equal to males. In their situation, caste, class, and other factors combine to create cumulative disadvantages, and they face many burdens of inequity.

References

- 1. IBM. Factor Analysis 2020. https://www.ibm.com/support/knowledgecenter/SSLVM B_23.0.0/spss/tutorials/factoranalysis_table.html.
- 2. Reed KE, Parry DA, Sandercock GRH. Maturational and social factors contributing to relative age effects in school sports: Data from the London Youth Games. Scandinavian Journal of Medicine and Science in Sports 2017, 27(12). https://doi.org/10.1111/sms.12815
- Sawka KJ, McCormack GR, Nettel-Aguirre A, Hawe P, Doyle-Baker PK. Friendship networks and physical activity and sedentary behavior among youth: A systematized review. International Journal of Behavioral Nutrition and Physical Activity 2013;10:1-9. Doi: 10.1186/1479-5868-10-130.
- 4. Silva JM. The perceived legitimacy of rule violating behavior in sport. Journal of Sports Psychology 1983;5:438-448. Doi: 10.1123/jsp.5.4.438.

- 5. Stirling AE, Kerr GA. The perceived effects of elite athletes' experiences of emotional abuse in the coach—athlete relationship. International Journal of Sport and Exercise Psychology 2013;11:87-100. Doi: 10.1080/1612197X.2013.752173.
- 6. Torstveit MK, Rosenvinge JH, Sundgot-Borgen J. Prevalence of eating disorders and the predictive power of risk models in female elite athletes: A controlled study. Scandinavian Journal of Medicine & Science in Sports 2008;18:108-118. Doi: 10.1111/j.1600-0838.2007.00657.x
- 7. Verma JP. Data analysis in management with SPSS software. In Data Analysis in Management with SPSS Software 2013. https://doi.org/10.1007/978-81-322-0786-3.