Establishment of norms for stork stand test of higher secondary students of Maharashtra state

Dr. Rohit A Tambe
I/C Principal,
Pravara College of Physical Education, Pravaranagar
Tal-Rahata, Dist-Ahmednagar

Abstract
To measure the physical fitness component that is stability and establishing norms of same test for students, age 16 and 17 years, studying in the Higher Secondary Schools of Maharashtra was represented the population. Random sampling, maximum 12,800 students (i.e., 6,400 boys and 6,400 girls) from all Education Divisions of Maharashtra state was attended for data collection. The research design followed, here, a survey-cum-normative research. To measure and Establishing norms for flexibility of the lower back of age ranging from 16-17 years, belonging to the state of Maharashtra, Sit and Rich test used as a tool. The results of the percentile norms presented the grade of raw scores in Stork stand test -item can be identified on the basis of Likert's Five Point scale.

Result reveals that the values of SK (Skewness) and Ku (Kurtosis) of the distribution of subject’s (16 Years) Sit and Rich were 1.112 (Boys), 1.497 lk (Boys), .858 (Girls), .491 lk (Girls) and subject’s (17 Years) 1.129 (Boys), 1.203 lk (Boys), 1.155 (Girls), 1.352 lk (Girls) respectively. It can, therefore, be said that the distribution of subject’s scores in Stork stand test is positively skewed. It seems the distribution of Stork stand scores is nearly normal.

Keywords: Establishing norms, physical fitness, stork stand test, higher secondary students

Introduction
Today, there is a growing emphasis on looking good, feeling good and living longer. Increasingly, scientific evidence tells us that that one of the keys to achieving these ideals is fitness and exercise. Exercise is not just for Olympic hopefuls of supermodels. In fact, you're never too unfit, too young or too old to get started. Many investigators (Kuntzleman & Reiff, 1992; Sallis & McKenzie, 1991) have reported that unfit or Low-fit, Under-grown and over-weight children exhibit early signs to coronary-artery disease including high Blood pressure and adverse Blood Lipid profiles. This has, in fact, compelled us to re-think about the real status of Physical fitness of going higher secondary students.

Keeping in view improving declined status of public health, the world's leading institutions (American Academy of Physical Education, 1987, the American Academy of Pediatrics committee on sports Medicine and School Health, 1987) suggested that-

- Proper programme in physical education and its policy and cover 97% of the population for better public health.
- Appropriate physical activity in physical education can significantly reduce risk factors of stress related diseases.

Surprisingly, while going through the related literature and presently existed syllabus of secondary schools prepared by Maharashtra State Board of Secondary and higher Secondary has been noted that though the health and fitness are the major objectives of physical Education, there is on proper procedure available for assessing the physical fitness of the school children. It is revealed from the existing syllabus of that Physical fitness and motor fitness teaching, training and evaluation has been incorporated and treated as an integral part of the present syllabus of Physical Education subject for secondary classes. However, there are no standard norms available for the assessment and Physical fitness till the date. Therefore the researcher has concern professionals as well as authorities for its application and inclusion immediately.
Materials and Methods
Research Design
The research design followed a Survey Study considering the norms of Physical fitness and Motor fitness test.

Population and Sampling
All the Students, age 16 and 17 years, studying in the Higher Secondary Schools of Maharashtra was represent the population. Considering the stratified random sampling, maximum 12,800 students (i.e., 6,400 boys and 6,400 girls) from all Education Divisions of Maharashtra state were attended for data collection. To obtain a representative sample from all over Maharashtra state and to make the study more authentic and reliable the present investigator chalked out a list of higher secondary schools to locate the educational zone-wised.

Instrumentation
On the basis of AAHPERD’s recommendation (AAHPERD, 1980) and results of earlier report (Pargonkar, 2002) [7]. Following test-item of Physical fitness test has been identified and variable-wise test items pertaining to the selected component of physical fitness were the instruments for data collection.

Components Test Items
Stability Stork stand test

Test Description
Stork Stand Stork Test
Purpose
To Measure Static balance

Facilities and equipment
A Stopwatch,

Procedure
The performer is asked to stand on the foot of the dominant leg and to place the ball of the other foot on the inside of the supporting knee. The subject is instructed to place the hands on the respective sides of the waist. The subject is informed that he/she will have to stand on the ball of the foot by raising His/her heel from the floor on the signal ‘start’. On the signal ‘start’, the subject raises the heel from the floor to maintain the balance as long as possible without moving the ball of the foot from its initial position, and the tester starts the stopwatch. As soon as the subject loses the balance either by touching heel to the floor or by the movement of the foot initial position, the tester stops the stopwatch.

Instruction
The performer is also encouraged to maintain balance with his/her best efforts and not to let the heel to touch the floor for the longest duration

Methods of Establishing Norms
The procedure of standardization and development of norms of ‘Physical Fitness Test’ and ‘Motor Fitness Test’ was followed by three stages (Bhattacharyya, 1977, Furst, 1970 and Bera, 1993) [4, 3].
1. Preparatory Stage involves formation of test-items, determination of content validity, first try-out to get a ‘preliminary form’ of developing Norms.
2. Middle Stage considers the evaluation of ‘Item-difficulty’ and ‘Item-discrimination’.
3. Final Stage includes establishment of final norms, test’s reliability and validity.

Statistical Techniques Used
The data were analyzed using the following statistical technique:
- The reliability of the Preliminary form of the test was determined by split-half method of correlation.
- Content validity was determined by analyzing the opinions of the various experts in the area of education and physical education.
- Item-Analysis and Factor Analysis of the test were done on the basis of the principles as stated by Bhattacharyya et al., (1977) [4].
- Before establishing the norms, the distribution of performance scores of each item of Health Related physical fitness and Motor Fitness test were assessed with respect to a normal probability curve. Here, normality of the scores was evaluated on the basis of the values of Skewness (SK), Kurtosis (Ku) and their standard errors along with the percentage of distribution within the range of three standard deviations.
- After testing the normality of the item-wise performance scores of the subjects, the data were processed for calculation of percentile norms.
- The item-wise normative data were graded on the basis of the principles of Likert’s Five point scale.
- In general, descriptive statistics was applied wherever deemed necessary (Bhattacharyya et al., 1977) [4].

Results
A) Results of Selection of test-items
Following test-items constituted the preliminary form of the test on Health Related Physical Fitness
- Stork stand test

B) Results on Establishing Norms
It is a common procedure that establishing the norms of a test is possible only if the related data are representing a mostly normal probability curve. Therefore, the normality of distribution of scores as obtained from test item was statistically tested separately. Skewness (Sk) and Kurtosis (Ku) of distributed scores of the large sample were calculated. After finding out the nature of distribution and on the basis of the characteristics of probability curve, the percentile norms of test item were determined.

Table 1: Characteristics of Distribution of Scores Obtained by the Subjects in Stork Stand test (Boys)

<table>
<thead>
<tr>
<th>Statistical Measures</th>
<th>Distribution Characteristics of Test Stork Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 Yrs.</td>
</tr>
<tr>
<td>Mean</td>
<td>4.3637</td>
</tr>
<tr>
<td>Std. Error of Mean</td>
<td>.04796</td>
</tr>
<tr>
<td>Median</td>
<td>3.8800</td>
</tr>
<tr>
<td>Mode</td>
<td>6.34</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>2.58050</td>
</tr>
<tr>
<td>Skewness (Sk)</td>
<td>1.112</td>
</tr>
<tr>
<td>Kurtosis (Ku)</td>
<td>1.497lk</td>
</tr>
<tr>
<td>Std. Error of Kurtosis (sk)</td>
<td>.046</td>
</tr>
<tr>
<td>Std. Error of Kurtosis (sk)</td>
<td>1.497lk</td>
</tr>
<tr>
<td>Std. Error of Kurtosis (sk)</td>
<td>.091</td>
</tr>
</tbody>
</table>
1. Result on the norms of Stork stand test

A) Result reveals that the values of Sk (Skewness) and Ku (Kurtosis) of the distribution of subject’s (16 Years) Stork Stand were 1.112 (Boys), 1.497 (Girls), .858 (Girls), .491 (Boys) and subject’s (17 Years) 1.129 (Boys), 1.203 (Boys), 1.155 (Girls), 1.352 (Girls) respectively. It can, therefore, be said that the distribution of subject’s scores in Stork Stand is positively skewed. It seems the distribution of Stork Stand scores is nearly normal.

B) The result of percentile norms indicates that the P99 and P1 values of the Stork Stand were “13.2604 & above” and “12300 & below” for 16 years boys and for 17 years boys “11.6244 & above” and “12630 & below” and for 16 years girls “9.2052 & above” and “12800 & below” and “9.9425 & above” and “12825 & below” respectively for 17 years girls.

2. Results on Reliability & Validity of Test

The item-wise Split-half reliability coefficients of items viz. 0.67 respectively. The ‘item-sum’ correlation showed that the ‘Test’ retained its face validity as the items were endorsed the experts after a thorough review.

Table 3: Grading Scale of Performance in the Health Related Physical Fitness Test based on the Percentile Norms for 16 and 17 Years High School Boys and Girls of Maharashtra State

<table>
<thead>
<tr>
<th>Age & Gender</th>
<th>Grades</th>
<th>Excellent (A)</th>
<th>Good (B)</th>
<th>Average (C)</th>
<th>Fair (D)</th>
<th>Poor (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (Boys)</td>
<td></td>
<td>13.26 & to</td>
<td>5.77</td>
<td>3.88</td>
<td>1.24</td>
<td>1.23 &</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.26 & Above</td>
<td>13.26</td>
<td>5.77</td>
<td>3.88</td>
<td>Below</td>
</tr>
<tr>
<td>17 (Boys)</td>
<td></td>
<td>11.62 & to</td>
<td>5.32</td>
<td>3.60</td>
<td>1.27</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.62 & Above</td>
<td>11.62</td>
<td>5.32</td>
<td>3.60</td>
<td>Below</td>
</tr>
<tr>
<td>16 (Girls)</td>
<td></td>
<td>9.20 & to</td>
<td>4.75</td>
<td>3.36</td>
<td>1.29</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.20 & Above</td>
<td>9.20</td>
<td>4.75</td>
<td>3.36</td>
<td>Below</td>
</tr>
<tr>
<td>17 (Girls)</td>
<td></td>
<td>9.94 & to</td>
<td>4.60</td>
<td>3.21</td>
<td>1.29</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.94 & Above</td>
<td>9.94</td>
<td>4.60</td>
<td>3.21</td>
<td>Below</td>
</tr>
</tbody>
</table>

Discussion of Results

Many state governments have prepared syllabus of physical education for improvement of Health Related Physical fitness and Motor fitness among the high school students, however, standard procedure for evaluation of fitness is beyond the reach of physical education teachers. It was, therefore, thought desirable to develop and standardize a test battery and establish norms to assess the physical fitness status of the high school student especially for the state of Maharashtra.

The present investigator has taken severe pain locate the sample throughout the state of Maharashtra and to get permission from the school to collect data. He accepted it as a challenge. He painstakingly made few groups of experts for data collection throughout the state. Finally, he was successful in collection the data required for this study.

The result revealed that the preliminary form of the test consisted of many test-items and all these items were found reliable and the reliability coefficients were accepted at the 0.01 level of confidence. Moreover, the preliminary form of the test was also found valid.

The hypothesis was further tested regarding the reliability and validity of the new formed test battery. The result revealed that the hypothesis as formulated in the thesis has been retained statistically at 0.01 level. Thus, the test battery was found reliable and valid to measure the Student Health Related Physical fitness and Motor fitness.

Conclusion

With limitations, the results of the present study helped to warrant the following conclusions:

1. The ‘Health Related Physical Fitness’ component as developed and standardized in this investigation finally contains this test-item. It can objectively assess the HRPF level of school boys (standard XI & XII) studying in secondary schools in Maharashtra with acceptable reliability and validity.

2. The norms developed in this study have adequate objectivity with statistical acceptability. The norms of the test are gradable and can useful to discriminate the High School Student having an Excellent/ good/ average/ Fair/poor level of physical fitness.

References

3. Bera TK. A study of Physical performance in athletics and

7. Pargaonkar GV. Development of norms of Physical fitness and selected athletic events for school boys aged 13 to 16 years in greater Mumbai (Minor research project for UGC, Pune), 2002.